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SUMMARY

Set-based analysis that jointly considers multiple predictors in a group has been broadly conducted for
association tests. However, their power can be sensitive to the distribution of phenotypes, and the underly-
ing relationships between predictors and outcomes. Moreover, most of the set-based methods are designed
for single-trait analysis, making it hard to explore the pleiotropic effect and borrow information when mul-
tiple phenotypes are available. Here, we propose a kernel-based multivariate U-statistics (KMU) that is
robust and powerful in testing the association between a set of predictors and multiple outcomes. We
employed a rank-based kernel function for the outcomes, which makes our method robust to various
outcome distributions. Rather than selecting a single kernel, our test statistics is built based on multiple
kernels selected in a data-driven manner, and thus is capable of capturing various complex relationships
between predictors and outcomes. The asymptotic properties of our test statistics have been developed.
Through simulations, we have demonstrated that KMU has controlled type I error and higher power than
its counterparts. We further showed its practical utility by analyzing a whole genome sequencing data
from Alzheimer’s Disease Neuroimaging Initiative study, where novel genes have been detected to be
associated with imaging phenotypes.

Keywords: Gene-set association analysis; Multiple phenotypes; Multivariate U-statistics; Non-additive effects;
Optimal kernel functions.

1. INTRODUCTION

The advances in high-throughput biotechnologies allow researchers to systematically investigate the role
of a deep catalog of predictors on the development of complex human traits (Welter and others, 2014).
To date, the traditional genome-wide association studies that assess the effects of predictors one at a
time have successfully detected millions of markers. However, their power can be limited partially due to
weak marginal associations, multiple comparison issues, and the lack of considering potential interactions
among predictors.
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The common strategy to address these limitations is to perform a joint association test, where a
set-based analysis is conducted to assess the cumulative effects of all predictors within the set (e.g., a
gene or pathway) (He and others, 2017; Wei and Lu, 2017; He and others, 2019). The subtle associa-
tions embedded in each predictor are aggregated and the number of tests is greatly reduced. Among the
existing set-based approaches, the kernel machine regression (KMR) models that assess the association
through measuring and comparing predictors’ and phenotypic similarities have been widely used (Liu
and others, 2007; Wu and others, 2011, 2013; He and others, 2017; Larson and others, 2017). Despite
their popularity, the performance of KMR greatly depends on the kernel functions used in measuring
similarities. They achieve the best performance when the chosen kernel mimics the underlying mecha-
nisms, but their power can be substantially reduced if otherwise (Wu and others, 2013; He and others,
2019). Indeed, the kernels reflect the prior beliefs about the disease mechanisms. For example, a lin-
ear kernel implicitly indicates there is an additive relationship between the predictors and outcome. In
practice, the true disease model is usually unknown in advance, making it hard to pre-select kernels. A
widely employed method for kernel selection is through a perturbation procedure, where a single ker-
nel that leads to the minimum p-value is selected and its distribution is derived empirically (Wu and
others, 2013; Larson and others, 2017). However, such a procedure can be computationally intensive,
especially for large-scale genomic data. Moreover, existing methods only select one kernel from all the
candidates, which may fail to capture complex relationships (Wu and others, 2013; Larson and others,
2017; He and others, 2019). For example, if there are both additive and pairwise interaction effects,
using only one kernel function (e.g., the linear or quadratic kernels) is unlikely to fully capture the
information.

Recent studies have indicated that many genetic variants are associated with multiple outcomes (Solovi-
eff and others, 2013). Joint analysis of multiple traits can substantially boost the power in detecting
biomarkers as compared to single-outcome analysis (Aschard and others, 2014; Zhan and others, 2017;
Dutta and others, 2019). It can borrow information across multiple traits and thus amplify the marginal
association signals, making them easy to detect (Aschard and others, 2014). It also allows for the explo-
ration of pleiotropic effects, and greatly facilitates the investigation of the underlying biology (Zhan and
others, 2017). It enables the investigation of the same disease from different perspectives, as many traits
are inherently multi-phenotypic with each reflecting a different aspect of the disease (Alberti and others,
2005; Wei and Lu, 2017).

Many methods have been developed for multiple phenotype analyses. These include (1) integrating
results from univariate analysis for each trait (van der Sluis and others, 2013); (2) collapsing multi-
ple phenotypes into a single score through dimension reduction methods (Klei and others, 2008); and
(3) multivariate analysis techniques (Wei and Lu, 2017; Zhan and others, 2017; Dutta and others, 2019).
While the first two categories are easy to implement, they either fail to consider the correlations among
multiple phenotypes or the weights for combining them are not optimal, leading to the loss of power
(Zhan and others, 2017). Among the multivariate methods, KMRs are one of the most popular models.
For example, Wu and Pankow (2016) developed a score based test statistics for the association analysis
with multiple traits. Broadaway and others (2016) proposed a dual-kernel approach, where hypothesis
test is conducted through comparing the genetic and the multi-trait similarities. Zhan and others (2017)
further developed the dual kernel-based association test where the dimension of phenotypes can be larger
than the sample size. Dutta and others (2019) developed a general framework for testing the pleiotropic
effects on continuous phenotypes using a multivariate KMR. Despite these advances, KMRs have several
key limitations. First, they are semi-parametric models that rely on the distributional assumptions, and
thus cannot handle multivariate traits with any arbitrary distributions. Second, KMRs usually concate-
nate all the phenotypes to form an outcome vector, and can be computationally demanding, especially
when a large number of phenotypes are considered. Third, for modern biomedical data that includes both
traditional variables and various new data types (e.g., shapes and images) (Wei and Lu, 2017), it can be
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challenging to integrate these complex data types into the KMR framework, which usually works in a
vector space (e.g., outcome is continuous or binary).

Motivated by KMRs and the recent development in U-statistics (Wei and Lu, 2017; He and others,
2019), we propose a kernel-based multivariate U-statistic (referred to as KMU) to assess the association
between a group of predictors and multiple phenotypes, where the similarities in predictors are compared
to those in outcomes. Compared to existing methods, our KMU has several key advantages. First, it makes
no distributional assumptions about the outcomes of interest, and thus is robust and powerful against
various distributions. Second, rather than selecting one kernel function from a candidate set (He and
others, 2019; Wu and others, 2013), we consider all possible combinations of kernel functions and choose
the one that best models the data. The asymptotic distribution of the test statistics in KMU is developed and
no computationally intensive perturbation procedure is required. Third, KMU embeds both the predictors
and outcomes in the Reproducible Kernel Hilbert Space (RKHS), and thus can handle high-dimensional
predictors and outcomes that include complex-objects. In Section 2, we studied the theoretical properties
of KMU in a general setting, where asymptotic properties are derived. Results from simulation studies
and a whole genome sequencing (WGS) data application were presented in Sections 3 and 4, respectively.

2. STATISTICAL METHODS

2.1. General setting and rationale

We assume a study of n independent individuals. Let py and pg represent the number of outcomes and
genetic variants, respectively. For the ith subject (i = 1, . . . , n), let Xi = (xi1, . . . , xim)

′ be a vector
of m covariates (e.g., age and gender), Gi = (Gi1, Gi2, . . . , Gipg )

′ be a vector of random variable for
the predictors within a set, which can be defined using existing criteria (e.g., a gene or pathway). Let
gi = (gi1, gi2, · · · , gipg )

′ be the observed value of Gi. For this study, we assume the number of predictors
pg is large and can be greater than n. We use Yi and yi to respectively denote the random outcomes and
its observed values for subject i, where the random outcomes can be a random variable (i.e., Yi ∈ R), a
random vector (Yi ∈ R

py ), a random matrix (Yi ∈ R
py×py ), and other data types (e.g., shapes or graphs).

Note that for both random outcomes and predictors, we let them take values on metric spaces (i.e., Y ∈ �Y

and G ∈ �G) without any assumptions for their distributions.Given the sample, our research interest lies
in whether the outcomes Y and predictors G are associated. Since no distributional assumptions were
employed for both Y and G, they can be of various forms (e.g., Y can be shape data). Therefore, it is
not straightforward to use regressions (e.g., KMRs) for the hypothesis testing. However, as shown in Wei
and Lu, 2017, it is relatively easy to construct kernel functions to obtain the pairwise similarities for both
outcomes and predictors. Let k(·, ·) : �Y × �Y → R and s(·, ·) : �G × �G → R be kernel functions to
measure the similarities between outcome Y and predictor G. Intuitively, if Y and G are associated, then
the high similarities between Gi and Gj (i.e.,s(Gi, Gj)) lead to high similarities between outcomes Yi and
Yj (i.e., k(Y i, Y j)) (Wei and Lu, 2017).

We use K and S to denote the kernel matrices for k(·, ·) and s(·, ·), respectively. Given the predictors and
outcomes for subjects i and j, their outcome and predictor similarities can be written as Kij = k(yi , yj) and
Sij = s(gi , gj). We define the centered outcome-similarity as K̃ij = k̃(yi , yj) = k(yi , yj) − E(k(yi , Yj)) −
E(k(Yi , yj))+ E(k(Yi , Yj)) and define the centered predictor-similarity S̃ij = s̃(gi , gj) in a similar manner.
It is straightforward to show that E(k̃(Yi , Yj)) = 0 and E(s̃(Gi , Gj)) = 0. Given n samples, the centralized
kernel matrices (i.e., K̃ and S̃) can be estimated empirically (He and others, 2019). The relationships
between two similarities can be assessed via testing ρ = 0 with ρ̂ = ∑

i<j K̃ij S̃ij/(
∑

i<j K̃2
ij

∑
i<j S̃2

ij)
1/2,

which is equivalent to test whether the numerator
∑

i<j K̃ij S̃ij �= 0 (Tzeng and others, 2009). As presented

in the following sections,
∑

i<j K̃ij S̃ij is of the same form as our proposed test statistic and those used in
Wei and Lu, 2017 and He and others, 2019.
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2.2. Hypothesis test based on a single kernel for predictors and outcomes

Let k ⊗ s : (�Y × �G) × (�Y × �G) → R be a kernel function such that (k ⊗ s)
(
(gi, yi), (gj, yj)

) =
s̃(gi, gj)× k̃(yi, yj). We define our test statistics as,

Us =
∑

1≤i<j≤n

K̃n
ij S̃

n
ij , (2.1)

where K̃n
ij and S̃n

ij are the ith row and jth column of the empirical kernel matrices. For notation simplicity, we
dropped the superscript n. Under the null hypothesis, we can show that E(k⊗s(Di, Dj)|Di) ≡ 0 and Us = 0
(Appendix A1 of the Supplementary material available at Biostatistics online), where Di = (Gi, Y i).
Therefore, Us is a degenerate U -statistics with the kernel k ⊗ s. Limit theory for degenerate U -statistics
with fixed kernel functions has been well studies by Weber (1981), Shieh (1997), and used by Wei and
Lu (2017), Wu and others (2011, 2013). In that case, the limit distribution is a mixture of independent
χ 2

1 . However, the kernel used in Us implicitly depends on the space �Y ×�G, and thus it depends on the
dimension of outcomes (py) and predictors (pg). Using the spectrum decomposition theorem, each kernel
function involved in Us can be decomposed as

s̃(g1, g2) =
∞∑

i=1

θgiφgi(g1)φgi(g2), k̃(y1, y2) =
∞∑

i=1

θyiφyi(y1)φyi(y2),

where θgi (θyi) and φgi(·) (φyi(·)) are eigenvalues and orthonormal eigenfunctions for the kernel s̃(g1, g2)

(k̃(y1, y2)). Let p = pg + py, and Vs,m = ∑∞
i=1 θ

m
si for any positive integer m, where s ∈ (g, y). Using the

Martingale Central Limit theorem (Brown, 1971) and the theorem in Hall (1984), we have the following
result for Us.

THEOREM 2.1 Given (k⊗s) is symmetric and E(k⊗s(D1, D2)|D1) ≡ 0.Assume E
[
(k ⊗ s)2(D1, D2)

]
< ∞

for each p. If
Vg,4

V 2
g,2

× Vy,4

V 2
y,2

→ 0 as p → ∞, then Us is asymptotically normally distributed with mean zero

and variance given by 1
2 n2E

[
(k ⊗ s)2(D1, D2)

]
.

The details of the proof is shown inAppendixA2 of the Supplementary material available at Biostatistics
online, and we estimate E

[
(k ⊗ s)2(Di, Dj)

]
empirically from the sample.

Various kernel functions can be used to measure the predictors’similarities (i.e., s(gi, gj)). For example,
for both categorical genetic data and continuous gene expression data, a linear kernel that corresponds to
the linear additive effects or a quadratic kernel that captures interaction effects can be used.

Similarly, various kernels can be used for the outcomes. As outcomes can be measured on different
scales and are subjected to outliers, we propose to use a rank-based kernel to improve the robustness of
the test and accommodate the situations where outcomes come from various distributions (e.g., Cauchy).
Define P0 = I n −X (X ′X )−1X and e = (ε1, ε2, . . . , εn)

′, where e can be viewed as residuals after adjusting
the effects of covariates X = (X1, X2, . . . , Xn)

′. It is apparent that e is residual from a linear regression
model, when outcomes are normally distributed. Let Ril = rank(eil), where eil is the residual for the
lth outcome for subject i. Note that outcomes can be measured on different scales, and thus the rank is
evaluated for each outcome. Let Ri = (Ri1, Ri2, . . . , Ripy ), and we define the rank-based kernel for the
outcomes as,

k(yi, yj) = R′
iRj

py
. (2.2)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
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Us embeds both the predictors and outcomes in RKHS, and can work well when both of them are high-
dimensional. In addition, Us has weaker assumptions as compared to those in He and others (2019), where
they showed that many widely used kernels (e.g., linear, polynomial, and identity-by-state kernels) satisfy

the assumption
Vg,4

V 2
g,2

→ 0 as pg → ∞ under mild conditions. Provided
Vy,4

V 2
y,2

is bounded, all the kernels

that meet their assumptions work for Us. Indeed, it is easy to see that
Vy,4

V 2
y,2

= 1 under their settings, and

thus their method can be viewed as a special case of our method. In a similar fashion, our method works

with a range of kernels under the assumption that
Vy,4

V 2
y,2

→ 0 as py → ∞ for outcomes and
Vg,4

V 2
g,2

is bounded

for predictors. The rank-based kernel function k̃(y1, y2) proposed for measuring outcome-similarity can

be viewed as a linear kernel, and thus satisfies the assumption
Vy,4

V 2
y,2

→ 0 as py → ∞ with mild conditions.

When outcomes are high-dimensional, our method is flexible in choosing kernel functions for predictors.

Instead of requesting a relatively strong condition of
Vg,4

V 2
g,2

→ 0 as pg → ∞, we only require
Vg,4

V 2
g,2

to be

bounded.

2.3. Hypothesis testing based on multiple candidate kernels and their combinations

In the previous section, we proposed Us (equation 2.1) that is robust to various distributions and outliers
via defining a rank-based kernel function for the outcomes. To increase the power of the test, we want to
choose the optimal kernel function s(gi, gj) for predictors, which can be challenging in practice. The form
of functions resided in the RKHS generated by the kernel function s(·, ·) is characterized by itself, and
thus the kernel used for measuring predictors’ similarities reflects the assumptions about the functional
relationships between the outcomes and predictors. For example, a linear kernel indicates a linear additive
relationship, and a quadratic kernel implies the pairwise interaction effects. While kernel functions are
flexible in modeling various types of effects, challenges arise given the true effects are unknown in advance.
It has been shown that misspecified kernel functions can substantially limit the power of an association
test (He and others, 2019; Wu and others, 2013).

To facilitate the selection of optimal kernels that capture the relationships between predictors and
outcomes, we propose a multivariate U-statistics based on Us, where a set of M candidate kernels
(s1(·, ·), s2(·, ·), . . . , sM (·, ·)) and their combinations are considered. Let ψ l = (ψl1,ψl2, . . . ,ψlM ) be a
weight vector associated with the lth combination of the M kernel functions, where |ψlj| ∈ (0, 1) for all
j ∈ (1, . . . , M ). Correspondingly, the kernel function and its kernel matrix under the lth combination is

sl(·, ·) = ∑
m ψlmsm(·, ·) and S̃

l = ∑M
m ψlmS̃m. To test whether the predictors and outcomes are associated

given S̃
l
, Ul = ∑

i<j K̃ij S̃ l
ij statistics is constructed and Theorem 2.1 is used to derive its p-value (denoted

by pl). Different from existing literature that only selects one kernel to capture a specific type of effect
(He and others, 2019; Wu and others, 2013), we use the idea of multi-kernel learning algorithms (Dereli
and others, 2019), where multiple kernels are selected to capture several types of effects. For example,
our method allows for the selection of linear and quadratic kernels simultaneously so that both the linear
and pairwise interaction effects can be captured.

Given a total of NM combinations of the M kernels, a vector of U = (U O, U C)
′ = (U1, U2, . . . , UNM )

′

can be constructed and their p-values p = (pO, pC)
′ = (p1, p2, . . . , pNM ) can be obtained, where U O is a

M × 1 vector of test statistics associated with the M kernel itself (i.e., ψlm = 1,ψlk = 0, ∀k �= m) and U C

is a (NM − M )× 1 vector of test statistics associated with kernel combinations (i.e., at least two kernels
are selected). We defined our test statistics (Ukmu) as the minimum of p-values from all combinations of
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M kernels:

Ukmu = argmin
l∈(1,··· ,NM )

pl . (2.3)

The distribution of Ukmu is usually obtained through a perturbation procedure (Wu and others, 2013).
However, it is computationally expensive, especially when the combinations of kernels are also considered.
Using Theorem 2.1 that Ul follows a normal distribution under the null hypothesis, the analytical form of
the distribution of Ukmu can be derived, which relies on the well-developed results for multivariate normal
distribution. Let � = (ψ1,ψ2, . . . ,ψNM

)′ be the weight matrix associated with all the combination of
kernels. The U vector can be written as U = �U O, and we have the following result (proofs are in
Appendix A3 of the Supplementary material available at Biostatistics online).

THEOREM 2.2 Assume condition
Vgm ,4

V 2
gm ,2

× Vy,4

V 2
y,2

→ 0 as p → ∞ is satisfied for all candidate kernels

Sm, ∀m ∈ (1, . . . , M ).

1. For UO that is derived based on a single kernel from the candidate set, we have UO
d−→ ZO, where

ZO = (Z1, Z2, . . . , ZM )
′ follows a multivariate normal distribution with mean 0M and covariance

�M×M .

2. For U that is derived based on a single kernel and multiple candidate kernels, we have U
d−→ Z ,

where Z = (Z1, Z2, · · · , ZNM ) follows a degenerate multivariate normal distribution with mean 0NM

and covariance � = ��M×M�
′

If only a single kernel is selected from the candidate set as existing literature (He and others, 2019;
Wu and others, 2013), we can simplify the overall test statistics as

U 0
kmu = argmin

l∈(1,...,M )

pl , (2.4)

where pl ∈ pO. While the perturbation procedure can be employed to obtain its distribution, we directly
derive its asymptotic results based on the first part of Theorem 2.2. For a given value of α, we have

Pr(U 0
kmu < α) =1 − Pr(U 0

kmu ≥ α) = 1 − Pr(pl ≥ α, ∀pl ∈ pO)

=1 − Pr [Pr (Ul > |ul|) ≥ α, ∀l ∈ (1, . . . , M )] (2.5)

=
[
1 − Pr

(
|�−1

0,M×M ZO| ≤ 	−1(1 − α/2)1M

)]
(1 + o(1)) ,

where �0,M×M = diag(σ1, . . . , σM ) and σ 2
l is the lth diagonal element of matrix �M×M . The leading term

in equation (2.5) can be efficiently calculated by many existing software (e.g., mvnorm package in R).
As evidenced by the multi-kernel learning algorithms, there are many situations where a single kernel

is not sufficient in capturing complex relationships. To allow multiple kernels being selected, we define
the test statistics using equation 2.3 and derived its distribution based on the second part of Theorem 2.2.
For a given value of α, the tail probability is

Pr(Ukmu < α) =1 − Pr(Ukmu ≥ α) = 1 − Pr(pl ≥ α, ∀pl ∈ p)

=
[
1 − Pr

(
|�−1

0 Z | ≤ 	−1(1 − α/2)1NM

)]
(1 + o(1)) , (2.6)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
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where�0 = diag(σ1, . . . , σNM ) and σ 2
l is the lth diagonal element of the covariance matrix�. While differ-

ent from the case where a single kernel is selected, Z follows a degenerate multivariate normal distribution
and its dimension can be large (i.e., grows exponentially with the number of kernels). Therefore, the stan-
dard software is not directly applicable. To facilitate the computation of the tail probability, we used the fact
that all elements in Z are linear combinations of the elements in ZO. Let� = diag(λ1, λ2, . . . , λM )

′ and A
be the matrices of eigenvalues and the corresponding eigenvectors for the covariance matrix�M×M . Z can
be written as Z = �ZO = �A�1/2Z0, where Z0 is a M × 1 vector with each element being independent
standard normal variables. Instead of treating Z as a random variable, we consider the low-dimensional
independently normally distributed Z0. Solving equation (2.6) is equivalent to the computation of a normal
distribution with integration region specified through a set of linear inequalities. This can be efficiently
calculated through a stochastic multiple integration algorithm designed by Genz (1992) and Genz and
Bretz (1999).

While we mainly focus on the kernel selection for the predictors in this article, the Theorem 2.2 and
equation (2.6) also apply for outcome kernel selections. Therefore, our proposed method can be applied
to select optimal kernels for both predictors and outcomes.

3. SIMULATION

We conducted simulation studies to evaluate the performance of our method under different outcome
distributions and disease models. For biological studies, the predictors can be both continuous (e.g., gene
expression data) and categorical (e.g., genetic data). Therefore, we considered both cases. For continuous
predictors, we set the number of variables to be 30 and 100, and each predictor was simulated from a
standard normal distribution. For categorical predictors, we randomly selected a gene from chromosome
13 and used the HAPGEN2 to simulate the genotypes (Su and others, 2011), where both common and
rare variants were included.

To form the kernel set for the proposed method, a linear kernel for the additive effects and a quadratic
kernel for pairwise interactions were considered for both continuous and categorical predictors. In addition
to these two kernels, we included a Gaussian kernel to capture other non-additive effects for continuous
predictors and a weighted linear kernel with beta weights to account for the effects from rare variants.
We compared our methods to the widely used SKAT-based methods with the default settings (Sequence
kernel association test (SKAT)). These include Lee and others (2012) that assumes the outcomes have
homogeneous causes (denoted by SKATh) and Aschard and others (2014) that allows for heterogeneous
effects (denoted by SKATp). We evaluated the performance of all methods under various sample sizes
(i.e., 500, 1000, and 2000). 5000 and 1000 Monte Carlo simulations were conducted under each setting
to evaluate the type I error and power, respectively.

3.1. Simulation I: The impact of outcome distributions

We first evaluated the impact of outcome distributions on the performance of our method. We simulated
two outcomes for each subject (Y i = (Yi1, Yi2)

′):

Yi = α0zi0 + α1zi1 +
[

2∑
j

∑
k

(
βk Ik∈Sm + βjk Ik∈Sjm

)
xik

]
+ ε i, (3.7)

where zi0 ∼ N (0, 1) and zi1 ∼ Ber(0.3) represent the continuous and categorical demographic variables
(e.g., age and gender), and αis are their corresponding effects. xik represents the kth predictor for the
i subject. Sm and Sjm denote the set of variables that are associated with both outcomes and only the
jth outcome (j ∈ {1, 2}), respectively. βk (βjk ) denote the shared (outcome-specific) effects for the kth
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Table 1. Type I errors under different distributions for correlated outcomes

Continuous Categorical
p = 30 p = 100 p varies

Distribution N Ukmu SKATh SKATp Ukmu SKATh SKATp Ukmu SKATh SKATp

500 0.0480 0.0431 0.0438 0.0512 0.0341 0.0344 0.0529 0.0485 0.0490
1000 0.0493 0.0476 0.0481 0.0513 0.0403 0.0433 0.0532 0.0462 0.0455Gaussian
2000 0.0467 0.0456 0.0476 0.0504 0.0455 0.0469 0.0496 0.0486 0.0480

500 0.0504 0.0445 0.0425 0.0469 0.0367 0.0350 0.0513 0.0465 0.0475
1000 0.0537 0.0489 0.0494 0.0504 0.0425 0.0428 0.0504 0.0491 0.0432T-dist(df = 2)
2000 0.0531 0.0510 0.0496 0.0521 0.0456 0.0425 0.0519 0.0500 0.0443

500 0.0475 0.0440 0.0441 0.0477 0.0330 0.0341 0.0527 0.0481 0.0440
1000 0.0504 0.0493 0.0478 0.0515 0.0453 0.0447 0.0517 0.0487 0.0470Mixture
2000 0.0490 0.0493 0.0500 0.0488 0.0449 0.0460 0.0503 0.0498 0.0461

predictor, and is sampled from a uniform distribution. Ik∈S = 1 if k is in set S, and 0 otherwise. Among all
the predictors, 20% of them are causal, of which 70% are shared by both outcomes. We considered three
distributions for ε i, including a multivariate normal distribution, a multivariate t-distribution with 2 degrees
of freedom and a mixture of 90% normal and 10% Cauchy distribution. We simulated two scenarios for
each distribution, including ε i are independent and correlated. The details of simulation settings and effect
sizes were summarized in Table S1 of the Supplementary material available at Biostatistics online.

All methods have reasonably controlled the type I errors for both continuous and categorical predictors
(Table 1 and Table S2 of the Supplementary material available at Biostatistics online). The empirical power
for the correlated and independent outcomes are shown in Figure 1 and Figure S1 of the Supplementary
material available at Biostatistics online, respectively. For all methods, the power increases as sample size
increases. When the outcomes follow normal distributions, our method performs similarly to SKAT-based
methods, regardless of the correlations between outcomes. However, when the outcomes are from a non-
exponential family, our method performs substantially better than the others. This is mainly because we
employ a rank-based kernel to measure outcome-similarity, which is robust under various distributions.

3.2. Simulation II: The impact of underlying disease models

In this set of simulations, we evaluated the impact of the underlying disease models on the performance
of our method. For continuous predictors, we simulated the outcomes as

Yi =α0zi0 + α1zi1 + αm ×
[
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ik
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∑
k ,k ′

(
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p
kk ′ Ik ,k ′∈Sp + β

p
jkk ′ Ik ,k ′∈Sjp

)
xikxik ′
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⎦ + ε i,
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Fig. 1. The impact of outcome distributions when outcomes are correlated

where αm = 1, αp = 1, and αo = 1 if linear, pairwise interaction and other non-additive effects are
present, and 0 otherwise. Si and Sji (i ∈ {m, p, o}, j ∈ {1, 2}) respectively denote the set of variables that are
associated with both outcomes and only the jth outcome for the ith effect. β i

k and β i
jk (i ∈ {m, p, o}) are the

shared effect and outcome-specific effect for the kth predictor, and are sampled from uniform distributions.
Similar to simulation 1, 20% of the predictors are set causal, of which 70% are shared by both outcomes
for each effect. In total, we considered 6 non-linear models, including the pairwise interaction only model
(i.e., αp = 1,αm = αo = 0), other non-additive effect only model (i.e., αo = 1,αm = αp = 0), and various
combinations (Table S3 of the Supplementary material available at Biostatistics online). For categorical
variables, we simulated the outcomes as,

Yi =α0zi0 + α1zi1 + αm ×
[

2∑
j

∑
k

(
βm

k Ik∈Sm + βm
jk Ik∈Sjm

)
xik

]
+

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
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Fig. 2. The impact of disease model when predictors are continuous (N = 1000, p = 100). Model A: Pairwise
interaction effects. Model B: Other non-additive effects. Model C: Linear and pairwise interaction effects. Model D:
Linear and other non-additive effects. Model E: Pairwise interaction and other non-additive effects. Model F: Linear,
pairwise interaction and other non-additive effects.

αp ×
⎡
⎣ 2∑

j

∑
k ,k ′

(
β

p
kk ′ Ik ,k ′∈Sp + β

p
jkk ′ Ik ,k ′∈Sjp

)
xikxik ′

⎤
⎦ + ε i.

We considered three disease models for categorical predictors, including (1) a linear additive model
caused by rare variants; (2) a linear additive model caused by common variants; and (3) a linear additive
and pairwise interaction model. For both continuous and categorical predictors,we considered two types
of distributions for ε i. These included a multivariate normal as well as a mixture of 90% normal and
10% Cauchy distributions, where variance for ε i is compound symmetric with correlation equal 0.2.
The details of simulation settings and effect sizes were summarized in Table S3 of the Supplementary
material available at Biostatistics online. For comparison purposes, we built a single-kernel-based Us

with s ∈ {linear, quad, gau, weight}, and further built a single-kernel-based Uave, where all kernels in the
candidate set were averaged.

The power for continuous predictors is shown in Figure 2 and Appendix Figures S2 and S3 of the
Supplementary material available at Biostatistics online. Us, whose kernel reflects the underlying dis-
ease model, achieves the best performance. Ukmu that considers all kernels and their combinations has
close-to-the-best performance. For example, when the disease is caused by pairwise interactions (i.e.,
Model A), Us with quadratic kernel performs the best, followed by Ukmu. However, when the relationship
between predictors and outcomes is complex, Ukmu that considers multiple kernels achieves the best per-

formance. For example, when Y i =
[∑2

j

∑
k

(
βo

k Ik∈So + βo
jk Ik∈Sjo

) (
e−x2

ik /100 + cos x2
ik

)]
(i.e., Model B),

Ukmu performs much better than any of those single-kernel-based Us. This clearly indicates the benefits of
a multi-kernel-based test when the underlying disease model is complicated. In addition, Ukmu performs

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
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Fig. 3. The impact of disease model when predictors are categorical (N = 1000). Model A: Rare variants have effects.
Model B: Common variants have effects. Model C: Linear and pairwise interaction effects.

better than the SKAT-based methods, and the advantages are much larger when the effects of predictors
on the outcomes are not linear and/or the outcomes follow a non-exponential family distribution.

The power for categorical predictors when N = 1000 is shown in Figure 3 and the rest are in Figure S4
of the Supplementary material available at Biostatistics online. Similar to continuous predictors, Us that
uses the optimal kernel has the highest power, and Ukmu has close-to-the-best performance. When the
outcomes are not simply caused by rare variants, Ukmu outperforms SKAT-based methods, especially
when outcomes are not normally distributed.

4. REAL DATA APPLICATION

We analyzed the WGS data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. ADNI is
a longitudinal study that assesses the effects of genetic variants on Alzheimer’s Disease (AD) and various
AD-related outcomes, including 3D brain imagining and cognitive measurements (Saykin and others,
2010). DNA samples from study subjects were obtained and analyzed using the Illumina’s non-CLIA
(Clinical Laboratory Improvement Amendments) WGS. A total of 808 subjects was included in the data,
with 280 controls, 234 and 246 early and late cognitive impaired subjects, and 46 AD patients at their
baseline assessment.

We are interested in the association between genetic variants and brain imaging outcomes, including
18F-fluoro-2-deoxyglucose, Hippocampus, Entorhinal, 8F-florbetapir (AV45), Fusiform, and Ventricles
measurements. These outcomes were treated as a multivariate outcome and their distributions were shown
in Figure S5 of the Supplementary material available at Biostatistics online. The rank-based kernel (equa-
tion 2.2) was used to measure the outcome similarity. For genetic data, we excluded genetic variants
with more than 20% missing, and grouped them based on gene range listed in the GRch37 assembly.
After quality control and the grouping process, a total of 22 494 autosomal genes harboring 1.8 million
genetic variants were included in our study. To form the candidate kernel set, we considered the linear,
weighted linear with beta weight, and the quadratic kernels to capture the effects from common variants,
rare variants and the pairwise interactions, respectively. For all the analyses, we included age, gender,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
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Fig. 4. Manhattan plot for whole genome gene-based analysis using Ukmu.

education, and the top 20 genome principle components as the covariates to adjust for the potential con-
founding effects. For comparison purposes, we also analyzed the dataset with SKAT-based methods with
their default settings, where the same set of covariates were used.

QQ plot shows no evidence of systematic bias of the methods (Figure S6 of the Supplementary material
available at Biostatistics online). The Manhattan plots for Ukmu and the others are shown in Figure 4 and
Figure S7 of the Supplementary material available at Biostatistics online, respectively. Our proposed
multivariate Ukmu method has detected 6 genes that achieve the genome-wide significance level (i.e., p ≤
10−6). In addition to the APOE and APOC genes that have also been detected by the single-kernel-based
Us methods (Figure S7 of the Supplementary material available at Biostatistics online), Ukmu has detected
4 additional genes (i.e., TOMM40, SHC1, CCDC87, and BLOC1S1). This indicates jointly considering
multiple kernels has the potential to capture more complicated relationships between predictors and
outcomes, and thus may improve the power of the test. While Us has detected APOE and APOC genes that
have well-known association with AD, the SKAT-based methods failed to identify any significant genes.

All of the six significant genes detected by Ukmu have reported evidence suggesting their association with
AD and its related phenotypes. For example, mounting evidence have suggested that APOE is related to
AD and its associated outcomes (Hoffmann and others, 2016). APOC1 gene is reported to be a genetic risk
factor for dementia and cognitive impairment in the elderly, and it has significant impact on hippocampal
volumes (Serra-Grabulosa and others, 2003). For the TOMM40 gene, some suggest their effects on AD-
related phenotypes are through its linkage disequilibrium with APOE (Maruszak and others, 2012), while

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa049#supplementary-data
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others found evidence of an independent association between TOMM40 and AD-related phenotypes, such
as hippocampal thinning (Burggren and others, 2017) and gray matter volume (Johnson and others, 2011).
Using a weighted burden test, Curtis and others (2020) found that CCDC87 could affect the susceptibility
to the late onset AD. Liang and others (2012) found that the expression pattern of SHC1 is associated
with AD progression, and Montibeller and de Belleroche (2018) found that the BLOC1S1 is profoundly
up-regulated in the frontal cortex of AD patients.

5. DISCUSSION

In this study, we developed a flexible framework to test the association between a set of predictors and
multiple outcomes, while adjusting for the confounding effects. We first proposed a robust Us statistic,
where a rank-based kernel is developed for outcomes. Based on Us, we further developed Ukmu and its
asymptotic distribution, where a set of candidate kernels were combined to optimally model the relationship
between outcomes and predictors. Through simulations and real data analysis, we showed that Ukmu (1)
is robust against the distributions of the outcomes; (2) performs as good as the kernel that reflects the
underlying disease models; and (3) outperforms single kernel-based methods when the relationships
between predictors and outcomes are complex.

Many published work can be viewed as special cases of Ukmu with corresponding values of K and
S, which reflect the assumed disease models. Fundamentally different from these methods that employ
only one kernel function to capture a specific type of relation (e.g., linear or pairwise interaction), Ukmu

works in a similar fashion as multi-kernel learning algorithms, where multiple kernels are combined in
a data-driven manner to capture the relationships between predictors and outcomes. Combining multiple
kernels in a data-driven manner offers greater flexibility and provides the capacity in modeling complex
relationships (e.g., both linear and non-linear effects are present). The proposed Ukmu is shown to have
controlled type I error and improved power over the weaker kernels in the set, without prior knowledge of
the underlying disease mechanisms. While we used equal weights for kernel combinations, other weight-
ing schemes (e.g., using prior information regarding the relationships between predictors and outcomes)
can also be employed.

It is well accepted that power for a kernel-based method can be substantially reduced if the selected
kernel does not reflect the underlying biology. In the existing literature, efforts were made for selecting a
single kernel from a candidate set. These methods are mainly based on a perturbation procedure developed
by Wu and others (2013), which can be computationally expensive. While we use a data-driven manner to
select/combine multiple kernels from a candidate set, our method is not computationally demanding, as
the significance is derived based on the asymptotic property of the test statistics. While we mainly focus
on the kernel selection for predictors, the asymptotic results also apply for the selection of kernels for
both predictors and outcomes. This makes our method efficient and scalable to genome-wide studies with
various types of underlying mechanisms.

Different from the widely used KMRs, our method adopted a rank-based kernel function to measure
the phenotypic similarity, making it robust against the outcome distributions. As shown in simulation 1,
our method has similar performance to that from SKAT-based methods when outcomes come from the
exponential family, but significantly outperforms them for other distributions. While we demonstrated the
methods with multiple outcomes, it is trivial to see that the proposed rank-based kernel also works for single
outcome. Regardless of the number of outcomes, our method can provide robustness against distributional
assumptions. We consider this important, as the outcomes can come from any distributions in practice.

In this study, we focused on using linear and weighted linear kernels to capture the effects from
common and rare variants in genetic data without considering any other additional information, such
as the association signals from prior studies. Our method can be further improved by adopting kernel
functions to incorporate prior biological knowledge, and this can be a future revenue of our research.
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Nevertheless, we have developed a powerful and flexible framework for testing the association between
a set of predictors and outcome(s). The proposed method has robust power regardless of the underlying
biology and outcome distributions. It can be easily scaled to genome-wide study and will contribute to
detecting biomarkers with pleiotropic effects.

6. SOFTWARE

Software in the form of R package, together with a sample input data set and complete documentation is
at https://github.com/YaluWen/KMU.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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